Copied to
clipboard

G = C52:4SD16order 400 = 24·52

3rd semidirect product of C52 and SD16 acting via SD16/C4=C22

metabelian, supersoluble, monomial

Aliases: C52:4SD16, Dic10:1D5, C10.14D20, C20.13D10, C4.3D52, C5:2C8:3D5, C5:1(Q8:D5), C5:2(C40:C2), (C5xC10).10D4, (C5xDic10):2C2, C20:D5.2C2, C10.3(C5:D4), (C5xC20).5C22, C2.6(C5:D20), (C5xC5:2C8):3C2, SmallGroup(400,68)

Series: Derived Chief Lower central Upper central

C1C5xC20 — C52:4SD16
C1C5C52C5xC10C5xC20C5xDic10 — C52:4SD16
C52C5xC10C5xC20 — C52:4SD16
C1C2C4

Generators and relations for C52:4SD16
 G = < a,b,c,d | a5=b5=c8=d2=1, ab=ba, cac-1=dad=a-1, bc=cb, dbd=b-1, dcd=c3 >

Subgroups: 500 in 56 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C8, D4, Q8, D5, C10, C10, SD16, Dic5, C20, C20, D10, C52, C5:2C8, C40, Dic10, D20, C5xQ8, C5:D5, C5xC10, C40:C2, Q8:D5, C5xDic5, C5xC20, C2xC5:D5, C5xC5:2C8, C5xDic10, C20:D5, C52:4SD16
Quotients: C1, C2, C22, D4, D5, SD16, D10, D20, C5:D4, C40:C2, Q8:D5, D52, C5:D20, C52:4SD16

Smallest permutation representation of C52:4SD16
On 40 points
Generators in S40
(1 37 20 14 31)(2 32 15 21 38)(3 39 22 16 25)(4 26 9 23 40)(5 33 24 10 27)(6 28 11 17 34)(7 35 18 12 29)(8 30 13 19 36)
(1 31 14 20 37)(2 32 15 21 38)(3 25 16 22 39)(4 26 9 23 40)(5 27 10 24 33)(6 28 11 17 34)(7 29 12 18 35)(8 30 13 19 36)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(1 3)(2 6)(5 7)(9 23)(10 18)(11 21)(12 24)(13 19)(14 22)(15 17)(16 20)(25 37)(26 40)(27 35)(28 38)(29 33)(30 36)(31 39)(32 34)

G:=sub<Sym(40)| (1,37,20,14,31)(2,32,15,21,38)(3,39,22,16,25)(4,26,9,23,40)(5,33,24,10,27)(6,28,11,17,34)(7,35,18,12,29)(8,30,13,19,36), (1,31,14,20,37)(2,32,15,21,38)(3,25,16,22,39)(4,26,9,23,40)(5,27,10,24,33)(6,28,11,17,34)(7,29,12,18,35)(8,30,13,19,36), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,3)(2,6)(5,7)(9,23)(10,18)(11,21)(12,24)(13,19)(14,22)(15,17)(16,20)(25,37)(26,40)(27,35)(28,38)(29,33)(30,36)(31,39)(32,34)>;

G:=Group( (1,37,20,14,31)(2,32,15,21,38)(3,39,22,16,25)(4,26,9,23,40)(5,33,24,10,27)(6,28,11,17,34)(7,35,18,12,29)(8,30,13,19,36), (1,31,14,20,37)(2,32,15,21,38)(3,25,16,22,39)(4,26,9,23,40)(5,27,10,24,33)(6,28,11,17,34)(7,29,12,18,35)(8,30,13,19,36), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,3)(2,6)(5,7)(9,23)(10,18)(11,21)(12,24)(13,19)(14,22)(15,17)(16,20)(25,37)(26,40)(27,35)(28,38)(29,33)(30,36)(31,39)(32,34) );

G=PermutationGroup([[(1,37,20,14,31),(2,32,15,21,38),(3,39,22,16,25),(4,26,9,23,40),(5,33,24,10,27),(6,28,11,17,34),(7,35,18,12,29),(8,30,13,19,36)], [(1,31,14,20,37),(2,32,15,21,38),(3,25,16,22,39),(4,26,9,23,40),(5,27,10,24,33),(6,28,11,17,34),(7,29,12,18,35),(8,30,13,19,36)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(1,3),(2,6),(5,7),(9,23),(10,18),(11,21),(12,24),(13,19),(14,22),(15,17),(16,20),(25,37),(26,40),(27,35),(28,38),(29,33),(30,36),(31,39),(32,34)]])

49 conjugacy classes

class 1 2A2B4A4B5A5B5C5D5E5F5G5H8A8B10A10B10C10D10E10F10G10H20A20B20C20D20E···20N20O20P20Q20R40A···40H
order12244555555558810101010101010102020202020···202020202040···40
size111002202222444410102222444422224···42020202010···10

49 irreducible representations

dim1111222222224444
type+++++++++++++
imageC1C2C2C2D4D5D5SD16D10D20C5:D4C40:C2Q8:D5D52C5:D20C52:4SD16
kernelC52:4SD16C5xC5:2C8C5xDic10C20:D5C5xC10C5:2C8Dic10C52C20C10C10C5C5C4C2C1
# reps1111122244482448

Matrix representation of C52:4SD16 in GL4(F41) generated by

04000
13400
0010
0001
,
1000
0100
00040
00134
,
04000
40000
001412
002916
,
0100
1000
003211
00309
G:=sub<GL(4,GF(41))| [0,1,0,0,40,34,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,40,34],[0,40,0,0,40,0,0,0,0,0,14,29,0,0,12,16],[0,1,0,0,1,0,0,0,0,0,32,30,0,0,11,9] >;

C52:4SD16 in GAP, Magma, Sage, TeX

C_5^2\rtimes_4{\rm SD}_{16}
% in TeX

G:=Group("C5^2:4SD16");
// GroupNames label

G:=SmallGroup(400,68);
// by ID

G=gap.SmallGroup(400,68);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,48,73,31,218,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^8=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,b*c=c*b,d*b*d=b^-1,d*c*d=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<